
Delegates & EventsDelegates & Events

Delegation classesDelegation classes : used in C# to implement : used in C# to implement pointer to pointer to
methodsmethods

useful for event handling and event programminguseful for event handling and event programming

a a delegation classdelegation class inherits from the Delegate class in a inherits from the Delegate class in a
special wayspecial way

a a delegatedelegate is an instance of a delegation class is an instance of a delegation class

Delegates & EventsDelegates & Events

Delegation classes :Delegation classes :

Delegate

MulticastDelegate

A delegation class is created by using the delegate keyword

this class is bound to a specific method signature.

Delegation class creationDelegation class creation

delegate return_type className(parameters);delegate return_type className(parameters);

creates the className delegation classcreates the className delegation class

example :example :
delegate int Deleg1(int x);delegate int Deleg1(int x);

creates the Deleg1 class.creates the Deleg1 class.

delegate creationdelegate creation

to create a delegate :to create a delegate :
ClassName Object = new ClassName(method);ClassName Object = new ClassName(method);

methodmethod must have a signature corresponding to must have a signature corresponding to
the delegation class definitionthe delegation class definition

example :example :
Deleg1 del = new Deleg1(oups);Deleg1 del = new Deleg1(oups);

with : with : int oups(int param);int oups(int param);

A complete exampleA complete example

using System;using System;
using utils; // remember class Pusing utils; // remember class P

namespace delegationnamespace delegation
{{

public delegate int Deleg1(int x); // this is a classpublic delegate int Deleg1(int x); // this is a class

class meths // this class contains only methodsclass meths // this class contains only methods
{{

static int method1(int a) {return a+1;}static int method1(int a) {return a+1;}
public int method2(int a) {return a+2;}public int method2(int a) {return a+2;}
public int method3(int a) {return a+3;}public int method3(int a) {return a+3;}

}}

… … // the test class follows// the test class follows
}}

A complete exampleA complete example

class test // also in delegation namespaceclass test // also in delegation namespace
{{

static void Main(string[] args)static void Main(string[] args)
{{

Deleg1 del = new Deleg1(meths.method1);Deleg1 del = new Deleg1(meths.method1);
// method0 is static// method0 is static
P.rintln(meths.method1(5));P.rintln(meths.method1(5));
P.rintln(del(5));P.rintln(del(5));

// the two previous instructions do exactly the // the two previous instructions do exactly the
same thing same thing
}}

}}

A complete exampleA complete example
class test // also in delegation namespaceclass test // also in delegation namespace
{{

static void Main(string[] args)static void Main(string[] args)
{{

meths m = new meths(); meths m = new meths();

Deleg1 del = new Deleg1(m.method3);Deleg1 del = new Deleg1(m.method3);
// method3 is an instance method, so a instance// method3 is an instance method, so a instance
// of meths must be created before del// of meths must be created before del

P.rintln(m.method3(12));P.rintln(m.method3(12));
P.rintln(del(12));P.rintln(del(12));

}}
}}

Accessing delegate informationAccessing delegate information

from the delegate object : informations on the from the delegate object : informations on the
method name, the object to which the method method name, the object to which the method
is bound (NULL if the method is static), and is bound (NULL if the method is static), and
the return type.the return type.

Multicast delegate :Multicast delegate :

a delegate stores information on several a delegate stores information on several
methods : linear list (methods : linear list (pointer _prevpointer _prev))

Associating methodsAssociating methods

let let deldel be a delegate: be a delegate:
Deleg1 del = new Deleg1(m.method3);Deleg1 del = new Deleg1(m.method3);

to associateto associate deldel toto m.method2m.method2 : :
del = del+new Deleg1(m.method2);del = del+new Deleg1(m.method2);

execution is done in the same order :execution is done in the same order :

callingcalling del(i)del(i) callscalls m.method3(i)m.method3(i) thenthen
m.method2(i)m.method2(i)

Delegate Invocation ListDelegate Invocation List

calling calling del(i)del(i) returns the value computed by returns the value computed by
the last method called.the last method called.

listing all the methods associated to a delegate :listing all the methods associated to a delegate :

del.GetInvocationList()del.GetInvocationList() returns an array of returns an array of
DelegateDelegate objects : objects :

Delegate[] GetInvocationList();Delegate[] GetInvocationList();

EventsEvents

a method should be executed when some a method should be executed when some
conditions are met :conditions are met :

 wait for required conditions : blockingwait for required conditions : blocking
 wait in a thread : time-consuming, not coherentwait in a thread : time-consuming, not coherent
 interruption : event programminginterruption : event programming

EventsEvents
an object an object OO raises an event : raises an event :

some other objects some other objects RRii must react to this event must react to this event

done through delegatesdone through delegates

RRii have to suscribe to the the event raised by have to suscribe to the the event raised by OO

Event communicationEvent communication

method sending
an event

delegate receiving
the event

suscribers
• method0
• method1
• …
• methodn

warns

calls

the delegate needs 2 informations about the event :
• its source
• its nature

Event communicationEvent communication
source : sender objectsource : sender object

nature : information of the event : EventArgs nature : information of the event : EventArgs
classclass

first step : create a delegation classfirst step : create a delegation class

public delegate void myDelegateClass(object public delegate void myDelegateClass(object
sender, EventArgs e);sender, EventArgs e);

Event storingEvent storing
second step : create an event in a classsecond step : create an event in a class

class transmittorclass transmittor

{{

public event myDelegateClass MyDel;public event myDelegateClass MyDel;

myDel stores the delegate to be warned : it is an myDel stores the delegate to be warned : it is an
objectobject

third step : create a method raising the event third step : create a method raising the event

Events and Delegates

 An event keyword is a scope modifier for the An event keyword is a scope modifier for the
delegate !delegate !

 Invocation access to the multicast delegate is Invocation access to the multicast delegate is
limited to the declaring classlimited to the declaring class

 The behaviour is as though the delegate were The behaviour is as though the delegate were
private for invocationprivate for invocation

Event raisingEvent raising
for inheritance purposes, first create a protected for inheritance purposes, first create a protected

virtual method raising the event :virtual method raising the event :

protected virtual void protected virtual void onMyDelonMyDel(object (object
sender, EventArgs e)sender, EventArgs e)

{{

if (myDel != null) // check for suscribersif (myDel != null) // check for suscribers

{{

myDel(sender,e);myDel(sender,e);

}}

}}

Event raisingEvent raising
now create a public method to raise the eventnow create a public method to raise the event

public void raiseEvent()public void raiseEvent()

{{

onMyDel(this,EventArgs.Empty);onMyDel(this,EventArgs.Empty);

}}

you may also create your own EventArgs with you may also create your own EventArgs with
inheritanceinheritance

that's all for the transmittor classthat's all for the transmittor class

Event HandlingEvent Handling
next step : create a class reacting to the event :next step : create a class reacting to the event :

(or several classes)(or several classes)
class receiverclass receiver

{{

public void action(object sender, public void action(object sender,
EventArgs e)EventArgs e)

{{

Console.Writeline("event caught");Console.Writeline("event caught");

// and some interesting things// and some interesting things

}}

}}

Event handlingEvent handling
last step : write the test classlast step : write the test class

class testclass test

{{

static void Main(string[] args)static void Main(string[] args)

{{

transmittor t = new transmittor();transmittor t = new transmittor();

receiver r = new receiver();receiver r = new receiver();

// subscription// subscription

t.MyDel += new myDelegateClass(r.action);t.MyDel += new myDelegateClass(r.action);

// to be continued…// to be continued…

Event handlingEvent handling
last step : write the test classlast step : write the test class

class testclass test

{{

// …// …

t.RaiseEvent(); //t.RaiseEvent(); //

// r.action is called by the delegate// r.action is called by the delegate

Console.Read(); // pauseConsole.Read(); // pause

}}

SubscriptionSubscription
subscribing :subscribing :

t.MyDel += new myDelegateClass(r.action);t.MyDel += new myDelegateClass(r.action);

unsubscribing :unsubscribing :

t.MyDel -= r.action;t.MyDel -= r.action;

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

